The Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Improves Diabetes-Induced Vascular Dysfunction in the Streptozotocin Diabetes Rat Model by Interfering with Oxidative Stress and Glucotoxicity

نویسندگان

  • Matthias Oelze
  • Swenja Kröller-Schön
  • Philipp Welschof
  • Thomas Jansen
  • Michael Hausding
  • Yuliya Mikhed
  • Paul Stamm
  • Michael Mader
  • Elena Zinßius
  • Saule Agdauletova
  • Anna Gottschlich
  • Sebastian Steven
  • Eberhard Schulz
  • Serge P. Bottari
  • Eric Mayoux
  • Thomas Münzel
  • Andreas Daiber
چکیده

OBJECTIVE In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress. METHODS Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE). RESULTS Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy. CONCLUSIONS Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in ...

متن کامل

The Effects of Empagliflozin, an SGLT2 Inhibitor, on Pancreatic β-Cell Mass and Glucose Homeostasis in Type 1 Diabetes

The novel sodium glucose co-transporter 2 (SGLT2) inhibitor empagliflozin has recently been reported to improve glycemic control in streptozotocin-induced type 1 diabetic rats in an insulin-independent manner, via an increase in urinary glucose output. We investigated the potential of empagliflozin to recover insulin pathways in type 1 diabetes by improving pancreatic β-cell mass. Blood glucose...

متن کامل

Safety of sodium-glucose co-transporter 2 inhibitors during Ramadan fasting: Evidence, perceptions and guidelines

Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new glucose-lowering therapy for T2DM with documented benefits on blood glucose, hypertension, weight reduction and long term cardiovascular benefit. They have an inherent osmotic diuretic effect and lead to some volume loss and possible dehydration. There is some concern about the safety of using SGLT2 inhibitors in Muslim type 2 diabete...

متن کامل

Soybean feeding improves vascular dysfunction and atte-nuates oxidative stress in streptozotocin-diabetic rats

Background and Objective: In this research, the effect of chronic dietary soybean aqueous extract on aortic reactivity of streptozotocin (STZ)-diabetic rats was investigated. Materials and Methods: STZ-diabetic rats were treated with soybean aqueous extract for two months after diabetes induction. Contractile reactivity to KCl and phenylephrine (PE) and relaxation response to acetylcholine (ACh...

متن کامل

Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice

BACKGROUND There has been uncertainty regarding the benefit of glycemic control with antidiabetic agents in prevention of diabetic macrovascular disease. Further development of novel antidiabetic agents is essential for overcoming the burden of diabetic macrovascular disease. The renal sodium glucose co-transporter 2 (SGLT2) inhibitor is a novel antihyperglycemic agent for treatment of type 2 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014